BIOSTATISTICS

Definitions

Parametric Tests	Non-Parametric Tests (Distribution-free)	
Assume population is normally, homogenously, & independently distributed.	Don't require this assumption. Observation is independent.	
 - x' - SD - t-test - ANOVA - Pearson Coefficient -Kolmogorov Smirnov test (Fischer's exact test & Mantel-Haenszel test are extensions of χ²) 	 Median - Mode - χ² - Spearman Coefficient - Mann-Whitney U test - Wilcoxon's signed rank test - Kruskal Wallis test - Friedman test. 	

Accuracy	Closure of value to true value.	
Precision (Kappa; $\kappa = 0-1$) $\kappa = 0 \rightarrow \text{ no agreement, }>0 \& <1 \rightarrow \text{ good}$ agreement, $1 \rightarrow \text{ perfect agreement}$ If true value is unknown \rightarrow precision Bias	>0 & <1 \rightarrow good (i.e, every time you repeat the test, it	
	value.	
Statistical Errors		
= failure of statistical test		
Type I error (α) = Probability (<i>P</i> value)	Rejection of correct hypothesis (false +ve).	
Chance of type I error = <i>P</i> value		
Type II error (β)Acceptance of incorrect hypothe (false -ve).		
Depends on statistical power of study. \uparrow statistical power $\rightarrow \downarrow$ Type II error Deven of study = 1 = 0		
Power of study = 1 – β <u>Power depends on:</u> - Significance level Sample size Accuracy of measurements.		
Glossary p. 98 (Cont. variables)FPGEE Secrets p. 73 (independent vs. depend)Glossary p. 99 (Discrete ")FPGEE Secrets p. 72, 74		

Important Statistical Values & Tests

n: no. *P*: probability

Name	Symbol	Equation/Definition	
Mean	x'	$\frac{\Sigma x}{n}$ also, $n \times P$	
Median	-	Mean of the two middle values	
Mode	-	Most common occurring value	
Frequency of Distribution	-	Mean – Median (Mode) <u>In graph:</u> If result: +ve → +ve skewed -ve → -ve skewed 0 → normal distribution	
Range of Set	-	Highest value – Lowest value	
Binomial Distribution	-	$n \times P$	
Standard Deviation	SD	$\sqrt{\frac{\Sigma(x-x^{'})^{2}}{n-1}}$	
	x' ± SD		
Degree of Freedom	df	n – 1	
Degree of Freedom in Chi- square table	df	$(R-1) \times (C-1)$ R: no. of rows C: no. of columns	
Variance	-	(SD) ²	
Relative Standard Deviation	%RSD	$\frac{SD}{x'} \times 100$	
Standard Deviation of Mean	Sm	$\frac{SD}{\sqrt{n}}$	
Pearson Coefficient	r	<u>3 (Mean – Median)</u> SD	

Chi-square (Cross breaks) To improve accuracy of <i>P</i> value, apply "Yates' continuity correction"	χ ²	$\Sigma \frac{([E - 0] - 0.5)^2}{E}$ E: Expected 0: Observed If $\chi^2 = \text{zero} \rightarrow \text{null hypothesis}$ $\uparrow \chi^2 \rightarrow \text{more significant}$
Risk Ratio (Relative Risk) In Cohort studies	-	Risk = $\frac{\text{no.of events}}{\text{no.of ppl exposed to that event}}$ Risk ratio = $\frac{\text{risk in tratment (exposed)gp}}{\text{risk in control (unexposed)gp}}$ Results: 1 = no risk > 1 = exposure ↑ risk < 1 = exposure ↓ risk *If Cl (confidence interval) of risk ratio includes 1 → statistically insignificant (& vice versa)
Odds Ratio In case-control studies	-	$Odd = \frac{\text{no.of times the event happen}}{\text{no.of times the event not happen}}$ $Odd ratio = \frac{\text{odds of being exposed to risk factor}}{\text{odds in control gp}}$ Results: 1 = no diff in risk b/w gps > 1 = risk of event ↑ in exposure < 1 = risk of event ↓ in exposure *If CI (confidence interval) of odd ratio includes 1 → statistically insignificant (& vice versa)
Absolute Risk Reduction	ARR	ARR= improvement (event) rate in ttt gp (%) – improvement (event) rate in control gp (%)
Number Needed to Treat	NNT	NNT = $\frac{100}{\text{ARR}}$ i.e, NNT of pts should be tted for <u>1</u> to get benefit. (\downarrow NNT \rightarrow the better)
Relative Risk Reduction	RRR	% of ↓ of risk (disease) from control gp to ttt gp % of unimproved (diseased)pts in ctrl gp - RRR= % of unimproved pts in ttt gp % of unimproved pts in ttt gp × 100
Number Needed to Harm	NNH	NNH= $\frac{100}{\% \text{ of pts had SE in ttt gp} -\% \text{ of pts had SE in ctrl gp}}$

Hazard Ratio (Cox Regression Model; Proportional Hazards Survival Model) -Estimate of life expectancy -Describes relationship b/w event (usually death) & variables (e.g. smoking).	HR	HR = $\frac{\text{hazard of event in gp 1}}{\text{hazard of event in gp 2}}$ Hazard: chance of something harmful happening If HR= 1 \rightarrow risk is same b/w 2 gps If HR= 2 \rightarrow risk is double in gp 1 than gp 2
Correlation Coefficient +ve R^2 = as one variable \uparrow the other variable is also \uparrow -ve R^2 = as one variable \downarrow the other variable is also \downarrow	R ²	$\mathbf{R}^2 = (r)^2 \rightarrow \times 100 = \%$ i.e, % of variation in (y) axis is related to variation in (x) axis * The closest to <u>1</u> → the strongest the correlation, whether +ve or -ve (r)
*Pearson Correlation Coefficient is used if normal distribution, otherwise Spearman Correlation Coefficient is used.		
Regression	-	y = a + bx b: regression coefficient

Types of regression:

Logistic regression:

Used where each case in the sample can only belong to one of two groups (e.g. having disease or not) with the outcome as the probability that a case belongs to one group only .

Poisson regression:

Used to study waiting times or time between rare events.

Difference between Correlation and Regression:

- Correlation measures the **strength** of the association b/w variables.
- Regression **quantifies** the association.

Kaplan-Meier:

Survival analysis (life tables).

Cox proportional hazards regression model:

Used in survival analysis where the outcome is time until a certain event.

Sensitivity, Specificity, & Predictive value:

		Disease	
		Present	Absent
Test result	Positive	A	B (false +ve)
	Negative	C (false -ve)	D

	Equation	Definition
All diseased	Sensitivity = $\frac{A}{A+C}$	How often the test will be +ve if the pt really have the disease
All healthy	Specificity = $\frac{D}{D+B}$	How often the test will be -ve if the pt is really healthy
All +ve	Positive Predictive Value (PPV) = $\frac{A}{A+B}$	If the result is +ve, what is the likelihood that the pt really have the disease
All -ve	Negative Predictive Value (NPV) = $\frac{D}{D+C}$	If the result is -ve, what is the likelihood that the pt is really healthy

- Perfect test if all = 1
- \downarrow the value \rightarrow the test less useful
- All × 100 = %

Likelihood ratio (LR): $LR = \frac{Sensitivity}{1-Specificity}$

if the test is +ve, how much more likely the pt is to have the disease than not having it.

Pharmacy Management MCQs Book: Questions: 250, 264, 307, 324

