## Biostatistics

## Definitions

| Parametric Tests | Non-Parametric Tests <br> (Distribution-free) |
| :--- | :--- |
| Assume population is normally, <br> homogenously, \& independently <br> distributed. | Don't require this assumption. <br> Observation is independent. |
| - $\mathrm{x}^{\prime} \quad-\mathrm{SD} \quad-t$-test | - Median - Mode |
| - ANOVA |  |
| - Pearson Coefficient |  |
| -Kolmogorov Smirnov test |  |
|  |  |
| Mantel-Haenszel test are | - Spearman Coefficient |
| extensions of $\chi^{2}$ ) | - Mann-Whitney U test |


| Accuracy | Closure of value to true value. |
| :---: | :---: |
| Precision (Kappa; к $=\mathbf{0 - 1}$ ) <br> $\mathrm{k}=0 \rightarrow$ no agreement, $>0 \&<1 \rightarrow$ good <br> agreement, $1 \rightarrow$ perfect agreement | Reproducibility of result (i.e, every time you repeat the test, it gives the same result) |
| If true value is unknown $\rightarrow$ precision more imp than accuracy |  |
| Bias | Systematic difference from true value. |
| Statistical Errors <br> = failure of statistical test |  |
| Type I error ( $\alpha$ ) $=$ Probability ( $P$ value) | Rejection of correct hypothesis (false +ve). |
| Chance of type I error $=P$ value |  |
| Type II error ( $\boldsymbol{\beta}$ ) | Acceptance of incorrect hypothesis (false -ve). |
| Depends on statistical power of study. <br> $\uparrow$ statistical power $\rightarrow \downarrow$ Type II error <br> Power of study $=1-\beta$ <br> Power depends on: <br> - Significance level. - Sample size. - Accuracy of measurements. |  |
| $\begin{array}{ll}\text { Glossary p. } 98 \text { (Cont. variables) } & \text { FPG } \\ \text { Glossary p. } 99 \text { (Discrete ") } & \text { FPG }\end{array}$ | Secrets p. 73 (independent vs. depend...) <br> Secrets p. 72, 74 |

## Important Statistical Values \& Tests

n: no. $\quad P$ : probability


| Chi-square <br> (Cross breaks) <br> To improve accuracy of $P$ value, apply "Yates' continuity correction" | $\chi^{2}$ | $\begin{aligned} & \qquad \frac{([\mathrm{E}-\mathrm{O}]-0.5)^{2}}{E} \\ & \text { E: Expected } \quad \text { O: Observed } \\ & \text { If } \chi^{2}=\text { zero } \rightarrow \text { null hypothesis } \\ & \uparrow \chi^{2} \rightarrow \text { more significant } \end{aligned}$ |
| :---: | :---: | :---: |
| Risk Ratio (Relative Risk) In Cohort studies |  | $\begin{aligned} & \text { Risk }=\frac{\text { no.of events }}{\text { no.of ppl exposed to that event }} \\ & \text { Risk ratio }=\frac{\text { risk in tratment (exposed )gp }}{\text { risk in control (unexposed )gp }} \end{aligned}$ |
|  | - | $\text { Results: } \begin{aligned} & 1=\text { no risk } \\ &>1=\text { exposure } \uparrow \text { risk } \\ &<1=\text { exposure } \downarrow \text { risk } \end{aligned}$ <br> *If Cl (confidence interval) of risk ratio includes $1 \rightarrow$ statistically insignificant <br> (\& vice versa) |
| Odds Ratio <br> In case-control studies |  | $\begin{aligned} & \text { Odd }=\frac{\text { no.of times the event happen }}{\text { no.of times the event not happen }} \\ & \text { Odd ratio }=\frac{\text { odds of being exposed to risk factor }}{\text { odds in control gp }} \end{aligned}$ |
|  | - | Results: 1 = no diff in risk b/w gps <br> $>1=$ risk of event $\uparrow$ in exposure <br> $<1=$ risk of event $\downarrow$ in exposure <br> *If Cl (confidence interval) of odd ratio includes $1 \rightarrow$ statistically insignificant (\& vice versa) |
| Absolute Risk Reduction | ARR | $\mathbf{A R R}=$ improvement (event) rate in ttt gp (\%) improvement (event) rate in control gp (\%) |
| Number Needed to Treat | NNT | $\mathrm{NNT}=\frac{100}{\operatorname{ARR}}$ <br> i.e, NNT of pts should be tted for $\underline{1}$ to get benefit. ( $\downarrow$ NNT $\rightarrow$ the better) |
| Relative Risk Reduction | RRR | ```% of }\downarrow\mathrm{ of risk (disease) from control gp to ttt gp```  |
| Number Needed to Harm | NNH | $\mathbf{N N H}=\frac{100}{\% \text { of pts had SE in ttt gp }-\% \text { of pts had SE in ctrl gp }}$ |


| Hazard Ratio <br> (Cox Regression Model; Proportional Hazards <br> Survival Model) <br> -Estimate of life expectancy -Describes relationship b/w event (usually death) \& variables (e.g. smoking). | HR | $\mathbf{H R}=\frac{\text { hazard of event in gp } 1}{\text { hazard of event in gp } 2}$ <br> Hazard: chance of something harmful happening <br> If $\mathrm{HR}=1 \rightarrow$ risk is same $\mathrm{b} / \mathrm{w} 2 \mathrm{gps}$ <br> If $\mathrm{HR}=2 \rightarrow$ risk is double in gp 1 than gp 2 |
| :---: | :---: | :---: |
| Correlation Coefficient <br> + ve $R^{2}=$ as one variable $\uparrow$ the other variable is also $\uparrow$ -ve $R^{2}=$ as one variable $\downarrow$ the other variable is also $\downarrow$ | $\mathbf{R}^{2}$ | $\mathbf{R}^{2}=(r)^{2} \rightarrow \times 100=\%$ <br> i.e, \% of variation in ( y ) axis is related to variation in (x) axis <br> * The closest to $\underline{1} \rightarrow$ the strongest the correlation, whether +ve or -ve (r) |
| *Pearson Correlation Coefficient is used if normal distribution, otherwise Spearman Correlation Coefficient is used. |  |  |
| Regression | - | $y=a+b x$ <br> b: regression coefficient |

## Types of regression:

Logistic regression:
Used where each case in the sample can only belong to one of two groups (e.g. having disease or not) with the outcome as the probability that a case belongs to one group only .

Poisson regression:
Used to study waiting times or time between rare events.

## Difference between Correlation and Regression:

- Correlation measures the strength of the association b/w variables.
- Regression quantifies the association.


## Kaplan-Meier:

Survival analysis (life tables).

## Cox proportional hazards regression model:

Used in survival analysis where the outcome is time until a certain event.

Sensitivity, Specificity, \& Predictive value:

|  |  | Disease |  |
| :---: | :---: | :---: | :---: |
|  |  | Present | Absent |
| Test result |  |  |  |


|  | Equation | Definition |
| :---: | :---: | :---: |
| $\begin{gathered} \text { All } \\ \text { diseased } \end{gathered}$ | $\text { Sensitivity }=\frac{A}{A+C}$ | How often the test will be +ve if the pt really have the disease |
| All healthy | $\text { Specificity }=\frac{D}{D+B}$ | How often the test will be -ve if the pt is really healthy |
| All +ve | Positive Predictive Value (PPV) $=\frac{A}{A+B}$ | If the result is +ve, what is the likelihood that the pt really have the disease |
| All -ve | Negative Predictive Value (NPV) $=\frac{D}{D+C}$ | If the result is -ve, what is the likelihood that the pt is really healthy |

- Perfect test if all = 1
- $\quad \downarrow$ the value $\rightarrow$ the test less useful
- All $\times 100=\%$

Likelihood ratio (LR): $\quad L R=\frac{\text { Sensitivity }}{1-\text { Specificiy }}$
if the test is +ve, how much more likely the pt is to have the disease than not having it.

## Pharmacy Management MCQs Book:

Questions: 250, 264, 307, 324

